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Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn’s disease (CD) and ulcerative colitis (UC), and these two 

conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been 
consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia 
coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and 
mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the 
severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.

Introduction
In the last decade, many microorganisms have been 

progressively linked in the pathogenesis of inflamma-
tory bowel disease (IBD) – mainly Crohn’s disease (CD). 
Escherichia coli and particularly the adherent invasive  
E. coli (AIEC) pathotype, has been increasingly implicat-
ed in the etiopathogenesis of CD, but until today the 
mechanism of AIEC in the pathogenesis of CD remains 
uncharted. Significant progress has been made in re-
cent studies on explaining the pathogenicity mecha-
nisms of AIEC in CD patients. At the molecular level, 
however, the characteristics of this strain remain con-
troversial. 

The human gut microbiota composes a population 
of approximately 1014 commensal microorganisms. Their 
genomes (also called metagenome or microbiome) are 
about 150 times the size of the human genome in 
terms of the number of genes [1]. In fact, the micro-
biota has an effect on the physiology and metabolism 
within the body. Moreover, to affecting the metabolism 
of the host, microbiota could also be involved in several 
pathological mechanisms. Activation and the develop-
ment of the mucosal immune system in the gastroin-

testinal (GI) tract depend on the complex association of 
these microorganisms [2]. Recent studies have linked to 
the role of the human gut microbiota in several human 
diseases, such as colon cancer, IBD, type 1 diabetes, in-
sulin resistance, non-alcoholic fatty-liver disease, aller-
gies, and asthma [3]. Therefore, it is very important to 
understand the connection of the microbiota in the ae-
tiology of such diseases by distinguishing species that 
compose a healthy microbiota [4–9].

The influence of the microbiota on human health is 
best demonstrated by studies in IBD, such as CD and 
ulcerative colitis (UC) [10–12]. Both CD and UC repre-
sent serious medical disorders noticeable by abnormal 
inflammation within the human GI tract, which results 
in serious clinical outcomes in affected patients. These 
diseases are very complex and involve the contribution 
of genetic factors as well as external factors such as 
geographical area [13]. IBD is caused by a dysfunction 
of the human immune response to gut microbiota and 
occurs in the case of host genetic susceptibility. CD is 
a chronic and commonly incapacitating inflammatory 
intestinal disorder, whose prevalence and incidence are 
on the rise in developed countries [14].
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The aim of this review is to discuss recent findings 
that indicate the role and mechanisms of AIEC in IBD, 
and to highlight the AIEC virulence factor genes and 
their mechanisms that suggest playing a crucial role in 
the severity of inflammation in CD patients. It is also 
aimed to discuss the current data on the prevalence of 
AIEC in CD patients.

The role of Escherichia coli  
in inflammatory bowel disease

Escherichia coli strains have been classified into sev-
en (A, B1, B2, C, D, E, and F) phylogenetic groups accord-
ing to virulence factors. Recently, the pathogenesis of 
IBD has been linked to human intestinal microbiota [15].  
Patients with CD display an altered gut microbial com-
munity, and the imbalance (dysbiosis) present in pa-
tients with colonic and ileac CD is different [16]. In con-
trast, a specific gut microbiota imbalance is beginning 
to be identified in UC patients, but differences between 
studies have inhibited attempts to reach a clear conclu-
sion to date [16–19]. E. coli is the most prominent bac-
terium in CD aetiology in the last 10–15 years [20, 21] 
(Table I) [22–30]. The growth of the E. coli population 
in IBD patients is currently unexplained, but that may 
be due to the association with increased production of 
reactive nitrogen species, allowing nitrate respiration, 
which confers E. coli a fitness advantage [31]. Recent 
studies based on cultural and molecular techniques 
support the theory that E. coli is an important micro-
bial factor involved in CD pathogenesis, but some dis-
agreement exists regarding its role in UC pathogenesis 
[17–19, 32–34]. In this section, we examine the recently 
published data on E. coli populations in CD patients re-
lated to their abundance, consortium associated with 
disease activity, and alteration of the human gut muco-

sa. We have also focused on the pathogenic properties 
of the strains to highlight evidence supporting or limit-
ing the inclusion of this bacterium into the IBD subtype.

Recently, an elevated number of mucous AIEC 
strains have been isolated from the gut mucosa of CD 
patients [35–38]. This has led to the illustration and 
identification of a new bacterial strain known as AIEC, 
which is characterised by its particular capacity to ad-
here and invade the cells of human small intestines, 
especially ileal cells [33, 39].

The most common virulence factors  
in adherent-invasive Escherichia coli 
strains

As mentioned previously, AIEC strains were exten-
sively linked to many aspects of CD pathogenesis, and 
their virulence factors were compared in the reference 
AIEC LF82 strain and non-AIEC strains. Despite all the 
research on AIEC pathogenicity, the exact genetic fac-
tors that could define it as a feature of the AIEC pro-
totype are still unknown. The majority of genes stud-
ied for AIEC pathogenicity are not AIEC-specific genes 
as for the fimH, htrA, dsbA or ompA genes, and these 
genes are also found in most E. coli strains, including 
non-pathogenic E coli [40–43].

E. coli possess fimbriae as a virulence factor, which 
confers pathogenic strains with the ability to adhere to 
and colonise various specific host epithelia. So far, the 
fimH gene is one of the most studied virulence factors in 
AIEC strains. The FimH gene encodes an adhesion char-
acteristic that allows the bacterial adhesion to glyco-
sylated and non-glycosylated host receptors, as well as 
the matrix-associated type I and IV collagens, glycosylat-
ed receptors, fibronectin, and laminin [44]. Even though 
almost all E. coli strains comprise type 1 pili including 

Table I. Abnormal prevalence of E. coli in Crohn’s disease patients in the last 5 years

Date Country Method Sample Reference

2013 United States of America Culture Ileal biopsies 22

2013 China qPCR Faeces 23

2013 United Kingdom Culture Ileal, ileocolonic, and colonic biopsies 24

2014 Spain qPCR Ileal, ileocolonic, and colonic biopsies 25

2014 Australia qPCR Ileal, ileocolonic biopsies 26

2014 Italy PFGE& RAPD Ileal biopsies 27

2015 India RT-qPCR Colonic biopsies 28

2017 Australia Culture & ELISA Terminal ileal biopsies 29

2017 Spain & Chile qPCR & culture Chilean (ileal biopsies), Spanish (colon or Ileal biopsies) 30

gPCR – Quantitative polymerase chain reaction, RT-qPCR – reverse transcription quantitative polymerase chain reaction, PFGE –pulsed-field gel electrophoresis, 
RAPD – random amplification of polymorphic DNA, ELISA – enzyme-linked immunosorbent assay.
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non-pathogenic strains, most AIEC strains generally offer 
a variation of fimH adhesion, which makes them more 
effective for binding to human intestinal epithelial cells 
[40]. Some other non-AIEC strains possess these muta-
tions as well, but these strains do not exhibit type 1 pili. 
Mutation of the fimH gene in AIEC strains can increase 
the ability to adhere to expressed carcinoembryonic an-
tigen-related cell adhesion molecules (CEACAM6) in in-
testinal epithelial cells (Figure 1). The expression of type 
1 pili and long polar fimbriae (LPF) of AIEC strains allows 
target M cells on Peyer’s patches, which help to trans-
locate across the barrier of intestinal epithelial cells [3]. 
LPF is considered a pathogenic feature and is one of the 
characteristics of AIEC strains in CD (Table II) [45–61].

Nevertheless, recent studies have shown that the 
fimH gene does not show any significant association 
with AIEC pathotype; this gene has been detected in 
both AIEC and non-AIEC strains [30]. However, a higher 
rate of the fimH gene has been reported in AIEC strains 
isolated from biopsy samples of patients with UC com-

pared to control subjects [62]. The FimH gene is the only 
gene that has been detected in all AIEC strains, mainly 
in B2 phylogenetic group E. coli [29]. The fimH gene and 
its protein were found to play an important role in the 
binding of E. coli to human epithelial colorectal adeno-
carcinoma (Caco-2) cells. A higher similarity between 
fimH alignments in the B2 phylogroup and adhesive 
strain of E. coli has been detected [63].

Invasion of the brain endothelium protein A (ibeA) 
gene; some extra-intestinal pathogenic E. coli (ExPEC) 
strains from phylogenetic group (B2) and especially 
new-born meningitis and avian pathogenic strains carry 
this virulence gene. The ibeA gene has invasion char-
acteristics that allow E. coli K1 to invade blood brain 
barrier. The ibeA gene was originally characterised and 
cloned from the chromosome of an invasive E. coli K1, 
which has been isolated from cerebrospinal fluid [64].  
E. coli K1 carrying the ibeA gene is thought to contribute 
to the pathology of neonatal meningitis E. coli (NMEC) 
and is responsible for most cases of meningitis in ne-

Metabolic advantage for AIEC
Increased AIEC adhesion AIEC

Figure 1. The diagram shows changes in the gut during inflammation mediated by adherent-invasive Esch-
erichia coli (AIEC) colonisation. Inflammation of the human gut can be triggered by several factors including 
diet, antibiotic administration, acute gastroenteritis, and host genetics. The pro-inflammation in human 
gut mediates noticeable changes in the gut, which can appear as hypoferremia and over-expression of car-
cinoembryonic antigen-related cell adhesion molecule (CEACAM6) surface receptors produced by epithelial 
cells in human gut. AIEC strains have been evolved and gained a competitive advantage in inflamed gut of 
the human intestines. This evolution includes the ability of AIEC strains to use a modified fimH protein to 
bind to CEACAM6 and to be able to utilise amine (N) and sulphur (S) oxides as electron acceptors
AIEC – adherent-invasive Escherichia coli, CEACAM6 – carcinoembryonic antigen-related cell adhesion molecule, Th – T helper, IL – interleukin, 
TNF-α – tumour necrosis factor α, IFN-γ – interferon γ.
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onates [64, 65]. NMEC strains harbour the ibeA gene, 
which is associated with reductive evolution, indicating 
a high degree of protection [66]. This gene is respon-
sible for the interaction of AIEC strains with human 
intestinal epithelial cells and macrophages, as well as 
colonisation of the mouse intestines. 

Several studies have been conducted to identify vir-
ulence factors associated with the AIEC phenotype. The 

ibeA virulence gene, which plays a role in invasion, was 
more common in the E. coli isolates in CD patients than 
in controls [67]. However, ibeA gene has been also de-
tected in the genome of AIEC strain (NRG857c), and this 
gene contributes to the invasion, macrophage survival, 
and inflammatory response in the murine intestine [68]. 

Regarding to the molecular mechanisms mediating 
ibeA gene interactions with host cells, existing data are 
quite insufficient. However, this gene was reported as 
a 50-kDa outer membrane protein containing seven 
predicted trans-membrane domains with expanded 
layers passing from the cell membrane to the extracel-
lular space [68]. According to recent reports, the ibeA 
gene can bind host proteins as potential receptors, in-
cluding polypyrimidine tract-binding protein (PTB)-asso-
ciated splicing factor (PSF), a RNA-binding component 
of spliceosomes, and vimentin (a type III intermediate 
filament (IF) protein that is expressed in mesenchymal 
cells) [27, 69].

The ibeA gene encodes an RNA polymerase and 
sigma S (RpoS)-like regulator with a narrow functional 
spectrum, which is considered to play a part in bacterial 
virulence adaptation in some NMEC strains, and this 
gene also located in the same operon with other genes 
(ibeR and ibeT) [70]. It is not known whether ibeA is 
regulated by ibeR, but brain endothelial cell invasion is 
affected by the absence of ibeA [70]. However, the ibeT 
gene is located near to ibeA and has been linked to 
affect invasion and adhesion of brain endothelial cells, 
even though it shows sequence homology to Na+/H+ 
antiporters [71].

Polysaccharide K capsule gene – many pathogenic 
E. coli strains, including AIEC strains, carry a polysaccha-
ride K capsule that protects the bacterium against host 
innate immune factors, and it plays a major role in resis-
tance and survival during infection. The pathogenic Ex-
PEC strains express a polysaccharide capsule that is im-
portant both pathogenically and taxonomically [72, 73].  
Commensal E. coli carries a high-molecular-weight, 
low-charge-density group 1 capsule; in contrast,  
ExPEC carries low-molecular-weight, high-charge-den-
sity group 2 and 3 capsules that protect ExPECs against 
phagocytosis and complement-mediated killing, there-
by contributing to extra-intestinal virulence [72, 74–78]. 
Nevertheless, the characterisation of this K antigen is 
highly specialised and cannot be performed in any lab-
oratory. In contrast, molecular detection of kps antigens 
can be performed in any molecular laboratory. Kps 2 
and 3 operons share moderate and highly conserved 
regions that encode transport and assembly functions, 
which combine with type-specific regions that encode 
the synthesis of the specific component sugars of the 
particular polysaccharide [79–84]. The contribution of 

Table II. Virulence factors described in AIEC strains

Gene name Gene description Reference

Genes involved in 
adhesion and invasion 
of intestinal epithelial 
cells:

FimH Type 1 Type 1 fimbrial adhesin 46–48

K 1, kpsMTII Capsule synthesis 49

afaC Afimbrial adhesin 50

ompC Outer membrane protein 51

ipaH Invasive plasmid antigen 52

ial Invasion-association locus 52

chiA Chitinase 3

Metabolic regulation 
and toxins:

chuA Heme transport system 53

irp2 Iron-regulatory proteins 30, 53

sit operon/sitA Iron and manganese 
uptake system/permease

53, 54

pdu operon/pduC Propanediol utilisation/
large subunit of 

propanediol dehydratase

53, 29, 55

fyuA/ybt Yersiniabactin siderophore 
system

53, 54

flhDC and fliA Flagellar regulators 56, 57

ratA Ribosome association 
toxin

30, 58

hfq RNA-binding protein 59

Peyer’s patches 
interaction and 
survival inside 
macrophages:

ibeA Invasion of brain 
endothelium protein A

49

lpf operon Long polar fimbriae 45

htrA High-temperature 
requirement A stress 

protein

60

dsbA Periplasmic oxidoreductase 61
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capsular antigen is well established in uropathogenic  
E. coli (UPEC) and protects against phagocytosis and 
complement-mediated killing [85, 86]. 

In laboratory animals such as mice, K1 contributes 
to the development of intracellular bacterial commu-
nities that are biofilm-like bacterial aggregates in su-
perficial bladder epithelial cells during the early stages 
of acute urinary tract infections (UTI) [87]. K1 serotype 
is highly associated with bacterial strains that cause 
blood infection, meningitis, and UTI [86, 87]. K1 capsule 
is made from sialic acid chain residues that are syn-
thesised by enzymes encoded by genes in region II of 
the capsule locus (neuDBACES), and this polysaccharide 
is similar to the polysialic acid found on some human 
cells, and due to molecular mimicry the K1 antigen is 
considered poorly immunogenic [88].

K1, K5, and kpsMT II genes are involved in the syn-
thesis of capsular materials and are important in the 
virulence of bacteria. These genes have recently been 
identified in the AIEC LF82 strain [89–92]. A positive as-
sociation between capsular genes (K1 and kpsMT II) in 
paediatric patients with CD has also been detected [67].  
The importance of these genes and their presence only 
in CD patients could additionally support that AIEC 
strains may persist in CD.

Virulence gene ferric hydroxamate uptake protein D  
(fhuD), outer membrane hemin receptor (chuA), and 
iron-regulatory proteins (irp2) are suggested to be relat-
ed with iron uptake. Iron is an essential element for all 
microorganisms, except some Lactobacilli. In fact, total 
iron in the human body amounts to about 4–5 g and it 
is not readily available for the bacteria because the iron 
is bound to eukaryotic proteins such as ferritin, trans-
ferring, haemoglobin, and lactoferrin. A host with a poor 
iron environment is a clear sign that influences the 
mechanism of iron acquisition. A low-molecular-weight 
Fe3+ binding compound (siderophores) will be synthe-
sised by the bacteria to transport and solubilise the iron 
to the bacteria, and Fe3+-siderophore complex is brought 
into the cell by a membrane protein [93]. Pathogenic 
bacteria have developed different mechanisms to ob-
tain and compete with the host for iron, which is an 
essential growth factor for the host and the bacteria 
[94]. However, a lack of iron generates the expression 
of some virulence factors such as toxins [95–97] and 
haemolysins [98–100]. 

The fhuD gene; E. coli possesses a ferric hydrox-
amate transport system, which is a soluble periplas-
mic binding protein. Fe3+ cannot be transported a mo-
no-atomic ion because of its extreme insolubility. Iron is 
bound to low-molecular-weight carriers designated sid-
erophores in microbes. E. coli Fe3+ siderophores have to 
be translocated across two membranes for uptake into 

the cells. After conversion of E. coli cells to spheroplasts 
fhuD protein is released, which indicates a location in 
the periplasmic space between the outer membrane 
and the cytoplasmic membrane [101]. The properties of 
this protein are typical for bacterial periplasmic binding 
protein-dependent transport systems (PBPs) through 
which peptides, amino acids, anions, vitamins, and 
some sugars are absorbed [101]. 

The chuA gene is a haeme iron acquisition gene. 
Several pathogenic E. coli strains carry this gene as an 
outer membrane protein responsible for haemin utili-
sation. A Recent study identified the chuA gene, which 
encodes the 69-kDa outer membrane protein responsi-
ble for haeme uptake in E. coli O157:H7 [102]. This gene 
is part of the haeme transport locus, which is widely 
distributed among pathogenic E. coli strains [103]. Iron 
is an essential element for growth of AIEC, and the AIEC 
strains that are enriched with siderophores (chu operon) 
are able to survive and persist inside J774 macrophages, 
which can be suggested as a major contributor to ac-
quiring and using iron and could encourage the mul-
tiplication of AIEC in inflamed human intestines [53].  
Within macrophages, AIEC could selectively utilise the 
host defects in autophagy [104], by upregulating of the 
chuA gene and stimulating the release of TNF-α to pro-
mote and enhance dysbiosis, multiplication, and per-
sistence of AIEC [105, 106].

The irp2 gene regulates the post-transcriptional 
expression of mRNAs that encode certain proteins in-
volved in iron utilisation and homeostasis [107–109]. 
Disorders of iron metabolism can cause major health 
problems because iron is a very important element for 
cellular functions. It can be linked to some metabolic 
processes, such as cell growth, inflammation, and apop-
tosis. Vertebrate iron metabolism and transcriptionally 
regulated expression of the major iron homeostasis 
genes are controlled by iron-regulatory proteins-2 (IRP2) 
[110]. Recent studies have shown that virulence genes 
related to iron uptake (fhuD, chuA, and irp2) have been 
detected in AIEC strains in patients with CD [30, 53]. 
Pathogenic and non-pathogenic E. coli strains carry the 
fhuD gene; however, the chuA and irp2 genes are less 
common among diarrhoeagenic and commensal E. coli 
strains [30]. Nonetheless, ExPEC strains carry both these 
genes. The presence of fhuD, chuA, and irp2 genes or 
the presence of just the chuA gene alone may play 
a crucial role in detecting AIEC in patients with CD [30]. 
This can be a suitable biological and diagnostic mark-
er that can be used to identify and characterise AIEC 
strains in CD patients. 

Ferric yersiniabactin uptake receptor (fyuA) gene 
acts as a receptor for iron yersiniabactin (Fe-Ybt) sidero-
phore uptake [111–113]. The virulence in many mem-
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bers of the Enterobacteriaceae family has been linked to 
this gene [113, 114]. This gene not only acts as a sidero-
phore uptake receptor but is also involved in biofilm for-
mation. Nevertheless, the role of the fyuA gene in bio-
film formation is not known yet, nor whether the effect 
is due to a decrease in concentration of intracellular 
iron or as a result of another mechanism that remains 
to be explained [115]. The fyuA gene has been identi-
fied in AIEC-like strains isolated from CD patients [67].  
Pathogenic bacteria grow and multiply by using Hb or 
haem as the sole iron source. These pathogenic bacteria 
obtain an entrance to the intracellular haeme reservoir 
alongside starting tissue invasion by secreting certain 
cytotoxins. During the progression of infection in CD pa-
tients, cytotoxin production combined with the haeme 
or/and haemoglobin using capacity to could assist the 
effect of iron acquisition.

The high-pathogenicity island (HPI) present in 
pathogenic Yersinia, which carries genes like fyuA that 
are involved in the transport, regulation, and synthesis 
of the siderophore yersiniabactin, has been detected in 
various strains of E. coli [116]. However, HPI has been 
detected in verotoxin-producing E. coli and does not 
appear to contribute to pathogenicity, but it can con-
tribute to the strain fitness of E. coli [117]. Furthermore,  
E. coli strains carrying HPI have been linked to diarrhoea 
in humans [118].

Ribosome-association toxin (ratA) gene is encoded 
by the E. coli genome [119]. This toxic protein inhibits 
the initiation of translation by associating specifically 
with the ribosome (50S subunit) and also inhibiting 70S 
ribosome formation. This gene has no effect on cellular 
mRNAs and is unable to dissociate 70S ribosomes [58].  
Inducing expression of the ratA gene causes inhibi-
tion of cell growth [58, 119]. A recent study has shown 
a positive association between rat gene and patients 
with CD, and the detection of this toxic gene is likely 
to play a crucial role in AIEC pathogenesis in patients 
with CD [30]. This gene was isolated and identified from 
adherent and invasive strains isolated from the ileum of 
patients with Crohn’s disease [120].

Quantitative real-time PCR-based 
analysis for adherent-invasive E. coli

AIEC strains are genetically variable, and the vir-
ulence factors are nonspecific. Recent studies have 
linked the AIEC strains with CD [121–124]. At present, 
time-consuming techniques such as in vitro infection of 
cell cultures that has been used to determine the ability 
of AIEC strain to adhere and invade epithelial cells as 
well as to survive and replicate within macrophage cells 
are required for the assessment of the pathogenicity of 
AIEC strains. However, these time-consuming techniques 

do not enable precise quantification of AIEC strains from 
human samples. A fast, sensitive, and successful quanti-
tative real-time PCR (qRt-PCR) technique is applied now-
adays for identification and quantification of microbes 
from clinical samples [33, 37, 125, 126].

A qRT-PCR assay for quantification of the LF82 strain 
and total E. coli in human intestinal samples from CD 
patients has been reported. Targeted bacteria have 
been quantified, and a standard curve has been made. 
Proper primers were designed to ensure high specific-
ity detection. This assay showed high specificity and 
robustness for the detection of LF82 strain in human 
intestinal tissues. Combining this technique with other 
techniques such as phenotypic assays (adhesion and 
replication in cell lines) will help in the isolation and 
characterisation of LF82 strain [39]. 

Conclusions
Considerable evidence indicates that E. coli and par-

ticularly AIEC strains are involved in the pathogenesis of 
CD. Although the prevalence of AIEC in the mucosa of CD 
patients has been reported in many studies, the abun-
dance of AIEC varies significantly between studies. The 
virulence genes that relate to adhesion, invasion, cap-
sule formation, iron acquisition, and toxin production 
among E. coli isolates from CD patients are thought to 
be major contributors for colonisation of E. coli in the GI  
tract. These virulence factors can define the pathophysi-
ology of CD like intestinal inflammation, bacterial trans-
location through mucosa, and formation of granuloma. 
A decade ago, the AIEC pathotype was discovered, and 
ever since, studies have reported the ability of AIEC to 
adhere and to invade intestinal epithelial cells, as well 
as to persist and survive inside macrophage cells. There 
are also several studies focusing on the detection of 
AIEC mechanisms in CD pathogenicity, and epidemio-
logical studies have been conducted on this disease, 
but further research is needed to confirm the role of 
AIEC on CD. Using time-consuming techniques to iden-
tify the AIEC pathotype is an important limitation, and 
molecular tools are needed. Moreover, molecular-based 
studies are needed to assist in the identification of the 
genetic elements among AIEC pathotypes, which can be 
a major contributor to understanding the pathogenicity 
of AIECs and their interaction with the host, and also 
could help in the detection of therapeutic agents for CD.  
Finally, to reach a definitive conclusion about the role of 
microbes and specifically the AIEC pathotype in CD de-
velopment, it is necessary to identify AIEC genes related 
to disease pathogenesis. 
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